TECHNICAL NOTE 1 # 0829 BOEING DISTRIBUTION OF THIS DOCUMENT IS UNLINITED: IT MAY BE FULLACIED TO THE GENERAL PUBLIC. This document has been approved for public release and sale; its distribution is unlimited. AIRPLANE DIVISION CLEARINGHOUSE for Federal Scientific & Technical Information aprings at Val 27151 ### THE BUEING COMPANY COMMERCIAL AIRPLANE DIVISION. RENTON, WASHINGTON DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED IT MAY BE RELEASED TO THE GENERAL PUBLIC. DOCUMENT NO D6-58362TN Stiffness MODEL General ISSUE NO. 7 TO: QQC #/ Distribution of this document is unlimited; it may be released to the general public. SUPERVISED BY M. L. Holmda APPROVED BY B. C. Hainline GRATE) BOEING NO D6-58362TN AD 1546 A ひつつく とのなれ (Y) トラロスー とうからのつちのからいかいしょうしょく ## Best Available Copy ## TABLE OF CONTENTS | | | Page | |------------|-------------------------------|---------| | · 1, | ABSTRACT | 3 | | 11. | ŞUMMARY . | 4 | | иí. | INTRODUCTION | 11 | | IV. | DISCUSSION | 12 | | | A. Description of Test | 14 | | | B. Test Procedure | 21 | | | C. Test Results | 25 | | V . | CONCLUSIONS | 82 | | ∘VI. | REFERENCES | 83 | | ··· . | APPENDIX | 84 | | ~ | A. Derivations & Calculations | 85 | | | B. Miscellaneous | 90
· | | | LIST OF ILLUSTRATIONS | 113 | | | LIST OF ACTIVE PAGES | 116 | | | REVISIONS | 118 | REV SYM BOEING NO. PAGE #### ABSTRACT Isothermal secont bulk modulus data was obtained from simulated hydraulic systems and compared with referenced data. Reference sources have been the only available data from which to select bulk modulus values for system and component design. Therefore a definite need existed for additional information as design values are presently selected arbitrarily or from experience. Often these values are arbitrarily modified for certain system design and vary greatly with the experience of the designer. This study was made to compare the amount of fluid compressibility existing within a typical airplane hydraulic system and within a standard bench test system. Additional comparisons were made with published reference sources.() D 1546 D BOEING NO. D6-58362T 2 AGE 6-70 #### II. SUMMARY This study was rade to compare the amount of fluid compressibility existing within a typical sirplene hydraulic system and within a standard bench test system. Additional comparison was made with published reference sources. As these reference sources have been the only available data from which to select bulk modulus (compressibility factor) values for system and component design, a definite need for additional information exists because presently these values are often arbitrarily modified for system design and vary with the experience of the designer. Bulk modulus, a measure of fluid compressibility, is an important fluid property in the design of systems employing fluid for force transmission and motion control. The fluid, acting as a spring in a spring-mass system affects such system factors as response time, force available from limited stroke actuators, and stability of servocontrolled hydraulic systems. The form of bulk modulus most commonly found in reference sources is the isothermal secant bulk modulus. It is defined as the total change in fluid pressure divided by the total change in fluid volume per unit volume under pressure at a constant temperature. It is expressed by the following relation: $$B_{\pm} = -\frac{\Delta P}{\Delta V} PSC$$ It is defined graphically as the slope of the line connecting two pressures of a pressure versus $\Delta V/V$ curve (Figure 1). For our Figure 1 Definition of Secant Bulk Modulus computations, one pressure was equal to zero. In this investigation two laboratory systems were employed to develop fluid compressibility, a simulated flight control (hydraulic) system and a conventional static bench system. The Pressure-Volume-Temperature method was used in both systems to obtain the bulk modulus data. With this method a change in oil volume is measured for a given pressure change, yielding a static bulk modulus value. The fluids used in this study were MIL-H-5606B, WSX-6885, end Skydrol 500A. The WSX-6885 fluid is under consideration for use in the Supersonic Transport. The MIL-H-5606B and Skydrol 500A are production fluids in general use in military and commercial aircraft. 1546 D BUEING NO.D6-58362TN **REV SYM** For the three fluids tested, the bench values compared with the published data within acceptable margins. Comparisons of the hydraulic system data resulted in different trends for the three fluids. With the MIL-H-5606B fluid, the initial values were the highest, the four hour values, the lowest (Figure 2). For both the WSX-6885 and Skydrol 500A fluids, the initial values were the highest, followed by the 4 hour and 18 hour values in decreasing order (Figure 3). With a 100 psi dormant period test section pressure, the bulk modulus values were repeatable within the range of test tolerances for both WSX-6885 and Skydrol 500A fluids. In order to determine if system cycling will restore the value of bulk modulus to its initial value following dormant unpressurized periods, two full stroke cycles were conducted after data was taken at four hours. Following bulk modulus measurements, two more cycles and measurements were made. In three of the four tests conducted with WSX-6885 and Skydrol 500A fluids, complete recovery from the lower four hour values to the initial values was made following the four cycles. The air content of the fluid and its variation with cycling was investigated by the use of a Seaten Wilson "Airometer." A negligible difference existed between cycled and uncycled fluid. The bulk modulus of a flowing fluid was also obtained. In determining this bulk modulus, the wave speed of a disturbance induced in the fluid D 1546, D BUEING NO. D6-58362TN PAGE 6 6.7000 | Land State Control | | | | | 160 | | | | | | | | | | | |--------------------|-------------|----------------|------|---------|---|------------|--------------|-------|-------|-----|-------|-------------|-----------|-------------|-----------| | | | | Ten | 10، | | · 克克· 克· | | | | | | | | | | | ن | 2 | 60 | | | PAT | 74 | | | | | | | | | | | · · | | | 7 | Sevar | ONTA. | | | 8 316 | | | 22.00 | | | | | | | | | | | 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | = 1 | | | | | | 220 | | | | | | | | | | | | | | | 4 | | 200 | - | | (40) | | | | | | | | | | | | | | | 7 | | 160 | , | | 140 | | | | | | | | | | | | | | | 2 | | í 2 0 + | | | | | | | | | | | | | | | - • 7 | | | | | | | | | | | | | | | | | · | | 100 | | | | | | | | | | | | | | | :
: | | 5 6 | 2000 | | | 3900 | | | | | | | 50 | R | · . | chig | | | BEVISEB | DAYE | | | | | | | | | | | | | CHECK SATE | | | | | TY.
Mòa | ilu s | DAT | A 7 | MIL | - N | 56 0 | 39 | F16
06-3 | 2
8362 | | | 7D 461 G-84 | | | | | A STATE | TH | E 90 | ing (| OMP | WY. | | | 7 | | is measured and combined with the fluid density and tubing correction factors to obtain an adiabatic bulk modulus as expressed by the relation: $$\overline{B}_{s} = \frac{\rho \alpha^{2} E t'}{E t' - \rho \rho \alpha^{2} C_{1}}$$ (See Appendix A) where "a" is the wave speed. Based on the data obtained, the following conclusions are realized. - For system conditions involving dormant unpressurized periods, as in utility systems, the fluid bulk modulus is initially low but approaches the published value within the first moments of system actuation. - Dissolved and entrained air or gas remaining within a hydraulic system which is continuously pressurized has no appreciable effect on the fluid bulk modulus and consequently the system stiffness. This effect applies to primary flight control systems and to systems in which the actuator remains pressurized but inactive over extended time periods. - Acceptable correlation was obtained between our bench measurements, and published data for MIL-H-5606B and WSX-6885 fluids. With Skydrol 500A an accurate assessment was difficult to realize due to the inconsistency of the published data available. - 4. The system measurements produced initial values which compared very favorably with the bench results for the three fluids tested. - 5. The system measurements following pressurized dormant periods yielded the most accurate correlation with the initial system values and subsequently the bench and published values. - 6. The method employed to measure the bulk modulus of a flowing fluid also produced acceptable results for both WSX-6885 and Skydrol 500A fluids. 1546 D REV SYM BOEING NO. D6-58362TN PAGE 6-700 #### III. INTRODUCTION This investigation arose from the need to obtain additional information on bulk modulus of a fluid in a hydraulic system, as the value of bulk modulus used in calculations is often arbitrary or selected on the basis of experience. Bulk modulus is a measure of the compressibility of a fluid, and is an important fluid property in system design as it affects such system factors as response time, force available from limited stroke actuators and stability of hydraulic servos and servo-controlled hydraulic systems. The data compiled in this document should provide an insight into the behavior of bulk modulus under actual operating conditions. AD 1546 🛢 D **REV SYM** BOEING NO D6-58362TN > #### IV. DISCUSSION Isothermal secent bulk modulus, one of several forms of bulk modulus and a measure of fluid stiffness, is the most commonly found form in reference sources. It is defined as the total change in fluid pressure divided by the total change in fluid volume per unit volume under pressure at constant temperature. The equation for this form of bulk modulus is $$B_{\epsilon} = \frac{\Delta P}{\Delta V} PSI$$ Graphically, it is defined as the slope of the line connecting two pressures of a
pressure versus $\Delta V/V$ curve (Figure 4). In this investigation, fluid isothermal secant bulk modulus values were obtained for three fluids at various temperatures and pressures. Measurements were made both in a standard bench fixture and in a hydraulic servo-actuator system. The purpose of using two systems was to investigate any variations in bulk modulus obtained with fluid contained within a simulated flight control system and values obtained in conventional static tests. The fluids used were MIL-H-5606B, WEX-6885, and Exydrol 500A. The WEX-6885 fluid is under consideration for use in the Supersonic Transport while the other two are production fluids in general use in military and commercial aircraft. This method yields the volume change for a pressure change exerted on a given initial fluid volume. The values obtained can be substituted in the relation above to obtain the bulk modulus value. | ENGR. | REVISED | DATE | DEFINITION OF SECANT | FIG 4 | |-------|---------|------|----------------------|------------| | CHECK | | | DEFINITION OF SECRIT | | | APR | | | BULK MODULUS | D6-58362TN | | APR | | | THE BOEING COMPANY | | | | | | RENTON, WATHINGTON | 13 | #### A. Description of Test The bench fixture consisted of a coil of tubing as the test section and a hand pump and associated equipment (Figures 5 through 7). This system has been used in previous tests at Boeing for the measurement of fluid bulk modulus values. The hydraulic system employed a servo-controlled single-ended actuator loaded by a torsion bor. The test section comprised the actuator to servo-valve tubing and is pressurized by a hand pump connected to the head, end of the actuator (Figures 8 through 10). Measurement procedures are identical for both systems. In selecting the tubing as the test section instead of the actuator, the following criteria were used. In using the actuator with the head end comprising the test cavity, the piston seal leakage and structural compliance of the actuator could not be accurately determined for all conditions investigated. The leakage is directly related to the bore-to-seal clearance. This clearance is affected by pressure, structural compliance of the barrel, longitudinal position of the seal in the barrel, and the seal wear. In addition, a suitable means of locking the piston-rod was necessary. The use of tubing alleviates these problems as a leak-tight chamber could be attained between two valves and the compliance of the tubing could be determined mathematically. Because the test section comprised the rod end to servo-valve tubing, it was assumed that the fluid in this section and in the actuator is subjected to nearly identical conditions. Therefore, the bulk modulus values obtained are representative of the fluid bulk modulus in the actuator. D 1546 D BOEING NO D6-58362TN | ENGR. | , | . REVISED | DATE | BENCH SYSTEM | F165 | |-------|-----|-----------|------|---|------------| | CHECK | | | _ | , | | | APA | | | | BULK MODULUS INVESTIGATION | D6-58362TN | | APR | , i | • | | THE BOEING COMPANY | 15 / 3" | AD 1017-86 1 4-7900 SHEET D4-5 (052TN) SHEET | * | | 4 - 100 | MV . | | | the state of s | |---|-------|-----------|--------|----------|------|--| | , | - | LIUS | 2/7/27 | REVISED | DATE | TEST SYSTEM FILE 8 | | | CHRCK | 5 14 1, 1 | | | | | | ٠ | AME, | / | | <u> </u> | | BULK MODULUS INVESTIGATION DE-58362TN | | , | APR | A.T. | | | , | THE BOEING COMPANY | | | ,/, | | , | ٠
٠ | • | NENTON, WASHINGTON | Alabora. , c. y - e-xi66 % SHEET D6-58362TN SHEET In addition to the above static values, the bulk modulus was also obtained for a flowing fluid by means of wave speed measurements. For measurement of the bulk modulus, a section of tubing approximately 100 feet in length was incorporated in the servo-actuator system adjacent to the pump. This section was equipped with a solenoid valve for testing of WSX-6385 and a pressure control servo-valve for Skydrol 500A fluids. Pressure transducers were incorporated in each enl of the test section to determine the elapsed wave travel time of the disturbance created by closure of the valves. (Figure 11.and 12). The wave travel time was utilized to determine the wave speed of the disturbance. The heating and cooling effect generated by compression and expansion waves occurs very rapidly and may be considered an adiabatic process. 2,3 Therefore, the wave speed in conjunction with the fluid density and tubing correction factors yields an adiabatic bulk modulus when substituted into the relation $$\bar{B}_{s} = \frac{\rho \alpha^{2} E t'}{E t' - D \rho \alpha^{2} C_{I}}$$ (See Appendix A) in which "a" is the wave speed of the disturbance. #### B. Test Procedure The data was taken under the following conditions for the three fluids under consideration. 0 1546 0 SHEET D6-58362TN SHEET | Kluid | Pressure pel X 1,000 1 2 3 4 5 | Temperature | Test
Pixture | |--------------|--------------------------------|--------------|------------------| | MIL-11-5606B | x x x x | 70 T, 200 T | Bench | | | x x x x | 100 f, 200 f | System | | wsx-6885 | x x x x | 100 F, 350 F | Bench | | | xxxx | 100 F, 350 F | System | | | x | 100 F, 200 F | \triangleright | | Skydrol 500A | x x x x | 100 F, 200 F | Bench | | | x x x x | 100 F, 200 F | System | | | x | 100 F, 200 F | | Wave speed measurements with a flowing fluid. In order to determine if system cycling will restore the value of bulk modulus to its initial value following dormant unpressurised periods; two full stroke cycles were conducted after data was taken at four hours. Following bulk modulus measurements, two more cycles and measurements were made. This sequence was performed at 100 F and 350 F and at 100 F and 200 F for WEX-6885 and Skydrol 500A fluids respectively with measurements being made at 1000 and 3000 psi. Bulk modulus measurements were made three times at each temperature and series of pressures for each specific fluid. System cycling was conducted for fifteen minutes prior to the initial measurements. Following a four hour dormant period at zero pressure, the bulk modulus measurements were repeated. A final measurement was made after a second dormant period of 18 to 114 hours. This procedure was followed for all three fluids and, in addition, was repeated for WSX-6885 and Skydrol 500A with a pressure of 100 psi on the test section during the dormant periods. AD 1546 2 D **REV SYM** PAGE 24 Extended cycling with NIL-H-5606B was also conducted for periods of 7 and 14 hours. Bulk modulus measurements were unde at a temperature of 200 F and pressures of 2000, 3000, 4000, and 5000 psi. The dormant periods were conducted at zero pressure. Following the extended cycling the system was drained and refilled with new MIL-H-5606B fluid and the bulk modulus measurements repeated under the previously mentioned procedure. #### C. Test Results 1. Banch and System Tests In comparing the bulk modulus values obtained with MIL-H-56068, the bench data and system data for uncycled fluid yielded curves of the same general slope. The system values exceeded the bench values (Figure 13). Although the numerical values are noticeably different, the deviation did not exceed 7.5 percent (Figure 14). In comparing this data with published data from The Bosing Design Manual, the difference in curve slope is considerable (Figure 15). However, the maximum deviation between the bench and published data was less than 8 percent (Figure 15). In comparison of the hydraulic system data, the initial values were the highest; the four hour values, the lowest (Figures 16 through 22). The 18 to 114 hour values were between the initial and four hour data with the exception of two cases in which these values were less than the four hour values (Figures 18 and 19). Although the fluid volumes in the bench and system test differed by a factor of approximately three,
the \(\Delta V's \) recorded differed \(\text{.} \) AD 1546 M D REV SYM PAGE 25 6-7000 TO 441 C-R4 -2 MIL-H-56068 ALVID 4000 2000 3000 5000 PRESSURE - PSI CALC REVISED F1415 DEVIATION BETWEEN BENCH CHECK AND PUBLISHED BULK MODULUS APR D6-58362TIN APR PAGE 28 THE BOSING COMPANY 70 41 CR4 | ····· | | | | | | | | | | | | | | | | |---------------|-------------|---------------------------------------|----------------|---------------|-----------------|---------------|--------------------|--------------------|----------------|-------------|-------------|---------------------------------------|-------------|--------------|----------------| | | | | • | | • | į | | • | | | • | • | | | | | | | | | ; | | t
: | , | | | • . | , , | | | | | | | | | | | | :
 | |
 | | <u>.</u> | <u>:</u> | | : . | <u>: _</u> . | | | | : | | . ! | : | • | : | i
: | | i | . : | | | | • | | | . , | | <u>-</u> | | | · - | ! | :
: | | | ,
 | <u> </u> | | , | | • - | | • | | | | : | • | ; .
! | | | | | • | •• | ; | ; | - | | | | | | | | - | <u></u> | | | - <u></u> | <u>.</u> | | | | | | · : | | | . | | • | : | ; . . . | |
! | | ; ·; | | | | | | | | · · - · | ::
 | | : | | | | | | | | ; | | | | : | | | | :
i | | <u>:</u> | ! | _ 72 | MP: | los | - سعر د | ZW | אנטא | V | | | | | | : : . | | | : | : ' | 0 | INIT | 九 | DAT. | 4 | | | | | . | | | | | | ;
, | | 5 | FOUR | e Hc | UR . | 04TA | | • | | | | | | • | • | : | ; | | | EISH | | | | | | | | | · [| | | - | | | | ·- V | B≅₩ | CH | 0474 | (70 | 9=) | | | | | | | : | | • | • | ; | | , | ı | | • | | • | | | | | | · | · · · | | | | | -
: : | | ÷ | | | • | | | | | | | | | | • • | | | | • | | | | | | | | : | | ; | | | : | | | | | | | • | . - | | | ~~~~ | | ; ·· | | . | : | | | :
 | ــ | | | | | | | | | | - | | | | | • | ·
; . | | | • | | | | | · | 240 | • - | | | | | | | | | | | | | • | | • | | | ٠. | | • | | | | | | | | | O | | | ` | | | | | -··· ·· | | | | · | سسرد | | | | | | | by | | A | | | | | |
ممد | | | | | | | | | . 8 | 230 | | · | | | | | | | | • | | | X | | | - 8 | | | | | | | | | تسد | سسسع | سسس. | | _/ | a | | | ď | | | ·; | | | / | | | • سسر
ا | | | | | | | | | 220 | | | | | ٠٠٠٠٠٠ | | | and the second | r | | | | | | | 3 | | Φ | - | | | | | | • | | | | | | | | 90 | - | 4 | | - | • | سخرا | | · ··· - | ~ | | • . | - · ·· | | | | | K MODIKIN | | | • | | | | | | | | | | | | | | لا | : 210 | | ,
/ | | 1 | 9 | | - | | ****** | | | | | | | 3 | | | | | | | | | | | • | | | | | | Ď | | | | | | | | _ | | | | | | | | | | 200 | E | | | | ••• | | و وسدود | | ~, | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 2000 | | | 30 | | | | 400 | 0 | | | 50 | 00 | | | • • | | · · · · · · · · · · · · · · · · · · · | 15. 24. | . <u></u> . | PZ | ESSU | @=- | PSI | | | | | . | | | | | | | | | | | | | | | | • | | • | | | • | | | | | • •• | | | ~ · · | | | | ` | • • • • | | | | | | | | | | | | | | | | | | • | | | ALC | | | REVISED | DATE | | F | 211 4 | Man | JLUS | <i>(</i> 2) | 1-7-^ | | | , - | | | HECK | | | 1 | |]_ | | | | | | | | | FIE | 717 | | | | | | 1 | 15 | YSTE | м - | MI | L-F | 1-5 | 600 | B | | D6-58 | 362T | | PR | | ~ - | | -} | -1 | | | | | | | | | P | | | APR
APR | | | | | } | | | | ING (| | | · · · · · · · · · · · · · · · · · · · | | PA-330 | | THE 3021NB CO 194N! TEMP: 200 F OINITH DATA E FOUR HOUR DATA A 114 HOUR DATA V EENCH DATA 190 170 160 BUK MODULUS - FRYND 150 140 130 MIL-H-5606 8 FLUID 120 2000 2000 5000 4000 FRESSURE - FSI | Car : | J 480 400 PATE 1 | 16- | | |----------|------------------|--|-------------| | 216 26 3 | | Olice Mesolus Dama | 1/7/19 | | 424 | | 7- HOUR EXTENDED CYCLING | D6-58362TIN | | AFR | | مرين مستحد مستحد من مستحد و مستحده و من من من بدر من من و من من من من من من من مستحد و مستحد المستحد و من من م
من من م | 1 *** 221 | | | | THE BOEING COMPANY | 321 | 10 17 C-51) } --, | TALE . | 20.01 | 2015 | BULK MODULUS DATA | 5.22 | |--------|-------|------|----------------------|------------| | C-ECK | j | | | | | APR | 1 | | SYSTEM - MIL-H-5606B | D6-58362TN | | APA | | | THE SOSING COMPANY | 35% | 10 to C21 only slightly when expressed as A V/V. At the maximum pressure, a maximum ΔV from the bench of 36 cc with an initial volume of 1136 cc yields a $\Delta V/V$ of 3.17. A similar ΔV of 11.7 cc from the system with an initial volume of 396 cc yielded a 4 V/V of 2.96. Although the data taken exhibits some repeatability, particularly good when comparing initial with initial, etc., an explanation for the variance with time is not apparent (Figures 23 through 28). One possibility is that air comes out of solution during the dormant periods causing the bulk modulus to decrease. With subsequent pressurizations (0-2000 psi initially) the air is again dissolved in the fluid and the bulk modulus increases. This might explain the results obtained after four hours but is discounted by the 18 to 114 hour data. It may also explain the increase in slope obtained with 4 hour and 18 to 114 hour data. Observance of this trend in initial test results led to the inclusion of the 100 psi pressurizetion in later WSX-6835 and Skydrol 500A tests. The bench date obtained with WSX-6385 fluid was compared with published data for ETC-5251 (Figures 29 and 30). These two fluids are very similar so the accuracy obtained was deemed sufficient. The deviation between the bench and published data reached a maximum of 3.5 percent at 100 F and of 7 percent at 350 F (Figure 31). The system data for VSX-6285 exhibited a slightly different trend than the MIL-H-5666B data. The initial values were the highest, with the 4 and 18 hour data following in decreasing order (Figures32 and 33). This data was for zero section pressure during the dormant periods. With a pressure of 100 psi on the test section during the dorment periods, the bulk modulus measurements yielded data that was BOEING No. D6-58362TN **REV SYM** TEHP: 100°F 2 PO RUN | EALC, | 7 | REVISED | DATE | A. | | | |-------|---|---------|------|--------------------|-----------|---| | CHECK | | | *** | VARIATION OF BULK | Fig. 23 | | | APR | | | | Modulus WITH TIME | D6-583621 | N | | RGA | | | | THE BOSING COMPANY | PAGE | | | | | | | THE DUEING COMPANE | 37 | | TO 441 C-14 | | | | | 7 - 7 | | a taga 🕌 | *** | 3 3 | | | | 3. | |------------------|--|---------------------------|------------------------|---|---|------------------------------------|--|-------------------------------------|--|---|--|-----------------| | | | ر الله
السام في يحود ر | | 4- | و پارسو اور سو | | | | | ن منسان الله الله الله الله الله الله الله ال | | | | - | | 1 | - 1 | | | | | | | 1 | 7 | | | g | | | | | and | | | | | -12 | | | | | | | • | | | | 1. | 5-3 | | | 200 | | | * | ,, 1- | | • | | | | | 14 1 · t | | | 1337 | | | <i>j</i> | *** * | - 1 | | ·, | magning i * | A | | | | | | * \$ 12 | | | | | . • | 1.4 | , ~ | -: | . ** | | | |
 | | | | - 1- | | | *** | . المؤمد المدالية | ا بالمنتجيم | . ق نتر څخه | | | 3.1. 2.1. | 1 | | ~ | | | <u> </u> | | 4 | | | 1 | 1 | | | | | - | - 1 | | \$ | | ** *** *** | | 1 The Co. | | .T. 12. | -4 | | - 4 | | * * * | . 1 | | . شد .
د | | | 1 | | | | ومرت وموسياه | | | | : | | | - 3. | · 1 | | HOUK. E | XTENDO | ED, CX | TING | | | 3 | | | | : 1_ | _ · | 1 | T. | Z00° | F | | 1 | | | | | • | 1 | | , | | - " | * | | | | 13.5 | | | | - 74 | 4 | | | | | | | | | | | 3 N | | | 190 | | h- | | | | | | | | | * 3 | | | | | , 4 | | • | i i di di | ing 🕏 🐃 | | Same of the | | | | | | - | | ٠., | · | | | | | The state of | | | 1. 18 | | | , | | 7 | | | | | ** ** | | | | - P | | | · | | | | | | 31 | | | | | 3 | | · • • • | 180 | 1,1 | | | | 7件到1 | | | | | | | | • | - j- | | 7 - | | | | | | | | | | | - | - | | | 1 1 | | | a erii
A na maena | a managada | ئىر ئۇيدا ئىزى
ئەرىسى سىرىد | | 41. | | | | ; | / \ | , '' | 4 | | | | | | | 1. 7. 7. | I . | | • | | | | | | | | | | | 计划性 | 71 | | | 170 | A-46 m | - | - | ميند عددد | | | Angel Control | | وگڏون وڏهن خون
پا | | ₹::[]. | | J. | · .[] | | _ | - | | | | المحيِّم . | 1> | | ر في المغر
المستحداث | | | 2 | 1 | • | | | - + | | - | 2 | | | 75000 | ⊙ / . | | * | - [| <i></i> | | \ | | | - | | | | | | | 8 | ,, L | | | | . : | * | | | -16- | | 2 148 ala | | | 1. | 160 0 | | * - | | | 7 | | | | | A4000 | 25/ | | 3. | | i . | • • | | | | * . • | | | # 3 (%) | | | | W | 1. | * * * * | | - <u>;</u> | | | <u>.</u> | - ; | | S | وسره ينسو | | | 3 | , t | | | • | | , | | | 5 °
 | | | ia N | | Ž | 150 | | | | | 1. | 4 | | | | | | | <u>,ä</u> | 100 | | | , | | | | | \ \. | | | 74 | | Ź. | l | • | | | -, -, -, - | | - | - "r - L | 1,- | | | 54 A | | ' | - 1 | , ** ** | | | ر المارية الما
مارية المارية | | | ··· 🗼 👾 | | | E 3000 / | 31 | | 3. | [| · · · . | | 4 | | | | | *** ## · | | | 生夠於 | | Ø | 140 | | , # 4
5 - 1 M - 8 - | 1 | ريان.
سامية المساور | | | | | £ 1.00 | | | | • | 5 🖺 • | | | i | أنو والم | * . | 1 | 1 | | | . 6 | | | , | | | , î * | | | | | | | | o ye i da wa | | | *** | • 4 | • • • | . | · · · · | المشارع والما | ا الله الإنسانية الله
الأنسانية | and the | | | | ا بينيو التربيري و | 9 46 | | ** | . 1 | , i : | !
*** | , | | | | *** | 1 | | المنابئ بالمنابع | | | • | 130 | | | | 1.1 | ا ا
دولاد کام محدد کے | | | · N | د کار داد.
حدم مشور | | | | ; | · | • | | • · | • | | , | | | | تها و حقوق المراقب الم
المراقب المراقب المراق | 经租间 | | • | ÷ . ¥ | | | , , , , , , , , , , , , , , , , , , , | | | 1 | r | : 5- | | | | | **** | 7. 1. | | ·*/- * * - | | | *** | i sa | و المنظمة المنظمة | | | 02000 | st) | | | | · ;, | • | • | · • | | - (| | | | | | | ** | 120 L | <u> </u> | <u> </u> | ···· | | | | | | · · · · · · · | 3 3 5 1 W | | | , | 0 | | 4 | ; " <i>B</i> . | i, | 12 | 16. | 20 | | 14. | 118 | اد ایو ن | | • | 3 | . " | 1.5 | 3 7 | Tinie | - Hou | es . | | | | 30,300 | 1.5 | | | ÷ | | · - * | -, -, | | | · • · · · · · · · · · · · · · · · · · · | · ; | · Like A his a | V(3), 33 | | | | | · · · · · · | | | , ' | , | | • | 2111 | والدين وكرسوارة والم | | | 2446 | | • | أنثوه يحسد | J. 1414 | | | an in America | | · | MIL-H | -2006 | D. th | UIL | 等进. | | * * * * , | | | , | * | | in the second | · *** | * 4. mg. | | | | | | * * * * * | * | | 4 | | , T.J. | | | , "it , is, | | | | 28.1% | | * ** ; | | | | DATE | 1 4 1 | | | agened eller
Commence | ************************************** | | NICE. | ATT ST | | ALC T | | | REVISED | | ન : | VARIATI | ION OF | = Eu | lakters. | | 1: 5.000 | | | | · · · · · · · · · · · · · · · · · · · | | RIYISEC | | · • • • • • • • • • • • • • • • • • • • | A' A 16. AAL F A A | | | | | | 25 | | HECK | and the second s | | | | | | | | | | FIGI | | | ALC
HECK | | | REVISEO | | | | . 11177 | | | | D6-583 | | | HECK | | | | | | ว้อนเ <i>บร</i> | W/77 | TIM | | | D6-583 | | | HECK PR | | | | | | ว้อนเ <i>บร</i> | | TIM | | | | | | HECK
PR
PR | | | | | | ว้อนเ <i>บร</i> | W/77 | TIM | | | D6-583 | | | HECK PR | | | | | | ว้อนเ <i>บร</i> | W/77 | TIM | | | D6-583 | | | | The state of | | | | |---------------------------------------|---------------|--|--|---| | | | | and the second s | | | | 4 (S -) | , | | | | | - 3 | | | | | ** | | | | | | | | 4. | | , , | | والمنافقية أواكن | 190 | المناف | 14 HOUR EXTENDED CYCLING. | | | | | | T-200°F | | | | | | | | | | | | one the first the second of th | | | | | | | * - | | | 180 | | The same of sa | | | | | 8 y 🐈 📆 🚶 | | | | والمنطقة المنطقة | | | | | | - T | | | Amenders promoter in the address of the contract contra | ا مشيدا | | | 1.1. | | 7 5000 PSI | | | ر
پا - مهرسمه عمد | 170 | | | | | | | | | • | | | | | A 4000 PSI | | | | | | | | | | | | #3000 PS! | u: | | Tages Carrier | 160 | | | ر المام المام
المام أن المام | | <i>L</i> . | | | p.Zooo P.SI | | | X | | | PASSOU FOI | | | | · · · · · | | | | | ₹3. | | | | | | | 150 | | The same of sa | | | | | 1 | | • | | Ž. | ÷ | | | * . | | · 3 | - : 1 | * | | Σ , , | | 8 | • 1 | • 1 | | | | ~ Z | 140 | | | | | 7 | | | | • | | * | | | | -7 | | 3 | 1 | | | *, * ** | | 10 | -47 H | | | | | * | 130 | See the second | The second of th | | | n)
An | | | | , * | | 3.4 | | | | 1, | | · · · · · · · · · · · · · · · · · · · | * | | | 1 | | | | | | • • • | | • •: | 120 | | الأربي أراحته المراجع | | | * 1 | | | | • | | | | | | * | | | | | | | | | | | un ali cinim m | | | the style as | 110 | | MIL-H-5606B FLL | بهرر | | , A | •
• • | , , , | | | | ا
المرسكلات | | A Secretary of the Control Co | ه الله الله الله الله الله الله الله ال | | | | 300 | | | * * | | | - 1 | | | | | | 100 | | | Derivativa en nom | | • | Į, į | 1 4 . 6 | 7 12 16 20 24
TIME = HOURS | 28 | | | * * * * * * * | The state of s | TIME - HOURS | . | | 4.4 | | | | : | | | 1 11 14 | | | * | | The type con | 1 | ர்வுக் இண்ணியாக வூர் சுரார் நிருப்பும்
இது இருந்து இ | The second of the state of the second of | • | | 4 | | *** | | * | |
ajadulipi kuu | ودرممج اعتبت | Pipolopialinamijų vienas mameninis maininas | ring , the fairment resource for a before community of the experience and experience and experience of the experience and experience and experience of the experience and experience and experience of the experience and an | , | | ALC . | | REVISED DATE | Minterest on Place House | 1- | | HECK | · | | VARIATION OF BULK MODULUS | FIE 26 | | PR | | | | D6-58362 | | | | + | WITH TIME | I | | | <u></u> | | TIP PARILO AGENTIO | PAG 40 | | FR | | 1 11 | THE BORING COMPANY | 40 | | FR | • | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | · I | 1 ; | | PR | | <u> </u> | | 1 | TD 441 C-R4 | | | روان الله الله الله الله الله الله الله ال | ~ | |--------|-------------------|--|----------------| | | | | | | | | | | | | . 4 | | | | | , | | | | | | A Company of the Comp | | | | • | | | | | 190 | | And the second | | | | TEMP: 200°F (NEW F | Callin | | | * * * | This Export (MEN. 1. | | | | 180 | | | | | , J. C. | | | | | | and the second of o | | | | | | | | | Mo | | | | | | 45000 PSI | | | | **** | | | | | 11:- | \$ 4000:PSI | | | 7 | 160 | | | | · Š | * * | | | | 8 | | | | | | 150 | 03000 PSI | ` | | , v | | | 1 | | 3 | | | .] | | 3 | י גוני.
"גוני. | | | | No. | 140 | | | | X | , 1 | | | | 3 | - | | | | 10 | 130 | | | | | | 02000 PSI | | | | * * | | | | | | | A. S. S. | | | 120 | | | | | | MIL-H-SCOLE | FIND | | | * ** | mag in October | | | | 110 | | | | | | | | | | | NOTE: POINTS ARE AVERAGE VALUES | 1. 9. | | | | | | | | 100 | Harrist Harris | | | | ` , 'C | 7 4 8 R 16 20 24 TIME - HOURS | 28 | | | | The state of s | | | | | | . A. A. | | | | | | | | | A STATE OF THE PROPERTY | | | CALC | | VARIATION OF BUX MODULUS | F1628 | | CHECK | <u></u> | | | | APR: | | WITH TIME | D6-58362TN | | LANK . | · | THE BOEING COMPANY | PAGE | | 1 | | <u>La lliña la la</u> | 47 | | | | - | | E 4 HOUR A 18 HOUR 140 130 120 100 3000 1000 PRESSURE - PSI BULK MODULUS DATA Fig. 33. CHECK SYSTEM W.SX -6885 D6-58362T THE BOSING COMPANY TD 41 C-24 repostable within test tolerances (Figures 34 and 35). A possible explanation for these results, in accordance with the reason given previously, is that the air remains in solution with the fluid due to pressure. In comparing the variation of the bulk modulus with time, the effect of pressurization during dorment periods can also be seen with the 18 hour values changing little from the initial values (Figures 36. through 41). Fluid cycling following a four hour dorment period yielded greatly different results for each temperature. At 100 F the four hour data decreased as expected, further decreased following two cycles, and increased after two additional cycles (Figure 40:,). The slope of the curves also changed. At 350 F the slope of the curves changes slightly with cycling with the values remaining essentially unchanged (Figure 4)). The bench data obtained with Skydrol 500A fluid was compared with published data from three sources as sufficient single source data was not available (Figures 42 and 43). This data was obtained from The Boeing Design Manual and from two separate Monsanto sources. Due to the inconsistency of this data when compared, the deviations between bench and published data were not calculated as they would be meaningless. This inconsistency is not uncommon when bulk modulus data from various sources is compared and further complicates the pioblem of determining the most correct value. The system data for Skydrol 500A exhibited a trend similar to the WSX-6885 data. With zero test section pressure during the dormant periods, the initial values were the greatest followed in decreasing order The second second tn 311 = 34 | (***) | | | | | |---|-------------|--
--|--| | | . 1 | | | | | * = = = = = = = = = = = = = = = = = | 180 | | | annamanan La | | * · · · · · · · · · · · · · · · · · · · | | | | Carlos de la companya | | - | | مىسىنۇ دېللىنىد ساتالسىدىدى
باراتۇرار دېلىنى | المستقدم المنظم المستقدم المستقد المستقدم المستقدم المستقدم المستقدم المستقدم المستقدم المستقدم المستقدم المستق
ولا يراد المستقدم الم | and the second of | | | 1 | | | | | | 170 | | | | | | | and the second s | | ever en | | mary way | | | | | | | | | | | | ette kan er er en .
Kan ar er | 160 | | | The second secon | | ~ " | | | TEMP: 350 % | | | *** | | *************************************** | O ZOATIAL | Man and an | | | 150 | | # 4 HOUR | | | | 150 | | A 4 HOUR + Z CYSLES | | | ma . An | | | 7 4 HUR + 4 CYCLES | - 4° | | 7 | | | | | | ` | Ho | i e to .
Communication of the communication | | | | . 3 | 7 | ه معرف الآخرية
الأخراج المعرف الأخراج المعرف الأخراج المعرف الأخراج الأخراج الأخراج الأخراج الأخراج الأخراج ال | الله الله الله الله الله الله الله الله | | | | | | and the second of o | (, | | | | | | | | 3 | 150 | | The same of sa | and all other descriptions are a | | 3 | *- * | | +4cva.es | * | | 3 | . ` . | The same of sa | 2 +2 CYCLES | ******* | | Z. | Ì | • | | | | . . | 120 | | | v
apatand tu ar rammu
u | | 3 | | | | | | D | | | A HOUR | a ar ina ar | | | - | | | | | هاها ها آناد
ایران افاد ا | 110 | | ا المحاسم الأمامية الأمامية المحاسم ال
المحاسم المحاسم المحاس | n are necession on the first of | | | : ' | | | · · · · · · · · · · · · · · · · · · · | | 41.40 S-40 S- | | , , y | ا با الله الله المستقد المستقد المستقد الله الله الله الله الله الله الله الل | and the name of | | - | | | | * : | | - | | | | - | | | 100 | - , | | months a superior | | | 100 | | | mangal kapané manahan
manahan | | e e e e e e e e e e e e e e e e e e e | 100 | | | mmy Prant () = 1.
mm | | | , | | | | | e e e e e e e e e e e e e e e e e e e | 100
-90 | | | | | | , | | | | | | , | | | | | | , | | | | | | .9 0 | 1000 | 2000 | 4000 | | | .9 0 | 1000 | 2000 3000
PRESSURE ~ PSI | 1000 | | | .9 0 | 1000 | | J OOO | | | .9 0 | Noo | | 4000 | | | .9 0 | 1000 | | 1000 | | | .9 0 | | PRESSURE ~ PS/ | 4000 | | | .9 0 | REVISES | PRESSURE ~ PS/ | 1000
Fig. A1 | | CHECK | .9 0 | | DATE SYSTEM DATA WITH FOUR HOUR | | | CHECK
APR | .9 0 | | PRESSURE ~ PS/ | D6-58362T | | CÁLC.
CHECK
APR | .9 0 | | DATE SYSTEM DATA WITH FOUR HOUR | | AND THE PROPERTY AND AND THE PROPERTY OF P The state of s C 1000. 90.Q. 800 100 600. 300 MENI-LOGARITHMIG 46 4653 MEUFFEL & ESSEN CO **ජ**වරව ROQ. DB-38362TN in O by the 4 hour and 18 hour values (Figures 44. and 35.). With a 160 psi test section pressure during the domain periods, the bulk modulus data was repeatable within the accuracy of test measurements (Figures 46. and 47.). Comparing this data with the WEX-6885 data illustrates the similar trend mentioned previously. This comparison also illustrates that due to the similar results with pressurisation the same effect could possibly be remained with fluids other than WEX-6885 and Skydrol 500A. Examination of the variation of bulk modulus with time for Skydrol 500A also shows the effect of pressurization with the 4 and 18 hour values varying little from the initial values (Figures 48. through 51.). For Skydrol 500k, cycling following the four hour dermant period yielded similar results at both 100 F and 200 F. The four hour data decreased markedly from the initial data. Rearly complete recovery occurred following two cycles, with complete recovery after two additional cycles (Figures 52 and 53%). At both temperatures, the slope of the four hour curves increased sharply but decreased with cycling to closely approximate the initial curve slope. In cycling with WEX-6885 and Skydrol 500A the fluid which was not initially in the test section and subjected to the pressurisation during measurement and to test temperatures during the dormant periods enters the test section. After two cycles a portion of this fluid remains in the test section. Assuming no mixing, approximately 5 cubic inches of fresh fluid remains in the test section (volume \approx 24 cubic inches) (Figure 54;). As can be seen, this volume of oil is exchanged with each pair of full stroke cycles. This fluid could possibly alter the bulk modulus values obtained AD 1546 D PAGE 59 6-7000 **REV SYM** 180 140 F745 4.4 D6-5836211 BULK MODULUS PATA CHECK SYSTEM SKYDROL SODA THE BOEIRIG COMPANY TO 44 C# | 10.10 | r |
 | | | | |-------|----------|--|------|-----------------------|-------------| | TALC | <u> </u> |
£6- 25D | CATE | BULK MODULUS VS TIME. | F1G48 | | CHECK | | | | DULK MODULUS VS TIME. | | | APR | | | | SYSTEM SKYDRUL 500A | D6-58362TN | | APR | | | | THE BOSING COMPANY | PALI | | | | | | THE BOENS CONPANT | .,64 | | | |
ســـــــــــــــــــــــــــــــــــــ | · | L | | TU 461 C-84 due to its different temperature and possibly different content of dissolved and entrained air. #### 2. Wave Speed Measurements with a Flowing Fluid In analyzing the test data, bulk modulus values were computed based on the wave speeds obtained from oscillograph recordings. The wave speed is affected by temperature but is not a function of flow rate (Figures 55 and 56). An average bulk modulus was computed for identical flow rate and temperature conditions. These values are compared with published data and tabulated (Figures 57 and 58). Adiabatic tangent bulk modulus data for WSX-6885 fluid was obtained from information available within Boeing (Figures 59 and 60). Comparable data for Skydrol 500A was obtained from Monsanto publications (Figures 60 and 61). The maximum deviations of test
data to published data was 15.6 percent at 100 F for WSX-6885 and 13.8 percent at 100 F for Skydrol 500A (Figures 57 and 58). The following discussion may in part explain these deviations. In determining the bulk modulus by this method, the most accurate value would be obtained from a single instantaneous disturbance. This would be the ideal case and would theoretically be a vertical pressure trace on the oscillograph recording at time zero. A disturbance of this type is not possible due to hardware limitations. However, this condition can be approached by utilizing the most rapidly closing valve obtainable. A rapidly closing valve is one which has a closure time of less than 2L/a,(x) (X)(SEE APPENDIX A) AD 1546 D BOEING NO D6-58362TN PAGE 71 6-7000 ekneralikan dabarburah makan barban berman bebanar barban berman barban bermanan bermakan bermanar dab 4500 100 F 4250 WIVE SLEW - FY/SEC 4000 200 5 3750 AVER JE VOL. IS 3520 10 FLOW - SPX: 15 20 £ 56 Vive GAZED VS AZON D6-58362TN スルセレガンは、モノコ THE 80-1 3 001 (ANY 73 BULK MODULUS DATA - FLOWING FLUID WSX- 6885 FLUID | | | | | | CAROPATOPIDIO ENEDED | משוא ושום | | |-----|-----|-------|------|---------|----------------------|----------------------|-------------| | RUN | Ø | а | ۲ | ઠ | DATA | DATA | 96DEVIATION | | | 3pm | PSI | ĥ | FT/SEC. | PSI | <u>A</u>
<u>8</u> | | | - | 970 | 2500 | 123 | 4230 | 246,000 260,000 | 260,000 | ų
4 | | 2 | ũ | 2,800 | 611 | 4185 | 240,000 | 271,000 | 1.4 | | М | Ō | 2888 | 727 | 47.38 | 247,000 | 267,000 | 7.5 | | 4 | ស | 2.688 | 111 | 4130 | 233,000 | 233,000 2.76,000 | 16.6 | | | 25 | 2813 | 197 | 4050 | 224,000 | 224,000 215,000 | 4.2 | | 2 | ល៊ | 7817 | 195 | 4000 | 218,000 | 215,000 | 4.1 | | Ю | 0 | 2900 | 361 | 4120 | 225,000 | 225,000 215,000 | 4.4 | | 4 | ຜ | 31 EO | 193 | 4.000 | 2.18,000 | 221,000 | 6.1 | | 1 | | | 20.7 | | | | | > BOEING DATA REF. S *Fig.* 57 D6-58362TN 74 BULK MODULUS DATA - FLOWING FLUID SKYDROLSOOA FLUID | | | | | | LABORATORIPUBLISHED | PUBLISHED | | |-----|-------|------|-------------|--------|---------------------|------------|-------------| | RUN | Ø | ۵ | ۲ | ઠ | , d | ų | % DEVIATION | | | 9pm | ₹. | т | FT/SEC | PSI | \ <u>8</u> | | | | 20.02 | 2888 | 200 | 3850 | 215,000 | 214,000 | 4.0 | | 7 | 2.71 | 2863 | 861 | 3975 | 000'677 | 214,000 | 7.0 | | N | 15.0 | 2875 | £072 | 3835 | 214,000 | 214,000 | 0.0 | | 4 | 10.0 | 3075 | 2002 | 3900 | 220,000 | 216,000 | 6:1 | | _ | (8.75 | 2813 | 011 | 4360 | 297,000 | 2%,000 | 0.3 | | 7 | 15.0 | 2863 | G 01 | 4085 | 256,000 | 297,000 | 13.8 | | 8 | 0.01 | 2950 | 86 | 4105 | 259,000 | 298,000 | (3. T | | | | | | | | | | MONSANTO DATA *F16.* 58 D6-58362TN 75 } 330 **3**20 310 300 290 280 270 260 250 MONSANTO DATA 240 3000 1000 2000 5000 PRESSURE - PSI CALC REVISED DATE PUBLISHED DATA - 100°F CHECK FIG. 61 SKYDROL 500A FLUID APR D6-58362TN APR PAGE 78 THE BOEING COMPANY TD 41 CR4 | | . , | | | | |------------|-------------|--|--|---| | | i - } | | | | | ·· | 260 | | | | | | - 1 | | | tanal day | | | 1. | | | | | | 1 | | | | | | 250 | | | الروائد والتواقع التواقع التواق | | | 230 | | | 3 | | | 1 | | | 44.V.Z | | | | | | | | | | | | | | • | 240 | and a company of a company of the co | | | | 44 | | | | 是行士引 | | Ģ | 1 | | | | | * | 1 | | | | | , is | 230 | | | | | 4 | | | | 177 | | ,
M | 1 | | | | | 3 | - 1 | | | | | 3 | 220 | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 全主 | | õ | | | | [2] [4] | | Ž | 1 | | | | | | Ì | | | | | 3 | - 1 | | | | | w. | 210 | 7 77 77 77 77 77 77 77 77 77 77 77 77 7 | and the same surface s | ايند اکتو کا تاست بر بد.
او د گار برد | | ~4 | 1 | | • | | | L | ł | | and a second of the | | | <u>```</u> | - 1 | | • | | | 3 | 200 | | | | | Ξ. | I | | • | | | K | | | بَيْنَ وَ اللَّهِ اللّ | والأرار المراسطات | | Ŋ | 1 | | .*. | | | E E | 190 | | | 1200 | | 8 | 150 | | • | | | 6 | } | | | | | F | | | | 75 9 4 | | | | | | | | | 180 | a description of the | promount on a street of the st | | | , | ļ | • | | | | | - 1 | سر، در | e in and some a more of the second distribution against | | | | | | | | | | 170 | a contract the second of s | | | | | 1 | | | | | | 1 | MONDANTO DATA | water a street of the second of the second of | | | | I | • | | | | | 160 | | | | | | | | 00 8000 | San San | | | | PRESSURE - PSI | a the second contraction | | | | | | ا الله الله الله الله الله الله الله ال | | | | | and the second s | | | | | | 1 | | | | | | | . 6 | <u> </u> | | ALC | | REVISED DATE | | | | HECK | | PUBLISHEL | DATA - 2009 | Fig. 62 | | PR | | Chrose | 500A AUID | · · · · · · · · · · · · · · · · · · · | | | | SKYDEOL | | D6-58362 | | 99 | | | | | | PR | | THE BO | EING COMPANY | PAGE 79 | this being the time required for the disturbance to transverse the length of the line and return. Construction of the valves utilized for these measurements prohibited determining the closure time. However, an estimate of this time may be obtained by observing the pressure traces. This was complicated by the fact that pump ripple was superimposed on these traces. In testing with WSX-6335, the percentage of air in the fluid was obtained by use of the Seaton-Wilson "Airometer." Fluid samples of new and cycled fluid were taken, the cycled fluid being drawn from the system following 27 minutes of cycling and after the 4 and 18 hour dormant periods at a temperature of 100 F. The new fluid yielded an average of 6.05 percent air. With the cycled fluid, the air content ranged from 6.5 to 8.0 percent (Figure 63). Cycling the fluid did not appreciably change the air content as can be seen. Both dissolved and entraine air is reflected in these measurements. However, as the samples could not be evaluated immediately upon removal from the system, it is suspected that the entrained air migrated to
the fluid surface and was released. An indication of this was the formation of an air bubble above the sample is a previously full container. So, the values obtained are probably most representative of the air discolved in the fluid. 1546 D BOEING NO D6-58362TN # AIR CONTENT DATA WSX-6885 FLUID | READING | NEW | CYCLED FLUID | | | | | | |---------|--------------|------------------|-----------------------------|------------------------------|--|--|--| | NUMBER | FLUID | CYCLED
22 MIN | 4 HOUR
DORMANT
PERIOD | 10 HOUR
DORMANT
PERIOD | | | | | ١ | 6.0% | 7.59• | 7.0% | 7.5% | | | | | 2 | 6.5% | 7.0% | B.0% | 6.75% | | | | | 3 | 6.0 % | 6.5% | 6.5% | 7.25% | | | | | 4 | | | | * 8.0% | | | | * VACUUM APPLIED FOR 5 MINUTES. INSTEAD OF CUSTOMARY 2 MINUTES. ** SAMPLES OF CYCLED FLUID TAKEN AT A TEMPERATURE OF 100 F. > F10.63 D6-58362TN 81 Based on the data obtained, the following conclusions are realized. - Acceptable correlation was obtained between our bench measurements and published data for MIL-H-5606B and WSX6885 fluid. An accurate assessment of the Skydrol 500A data was difficult due to the inconsistency of the published data available. - The system measurements produced initial values which compared very favorably with the bench results for MIL-H-5606B and WSX-6885 fluids. The data obtained with Skydrol 500A bracketed the initial values with the curve having a slightly greater slope. - 3. The system measurements following pressurized domaint periods yielded the most accurate correlation with the initial system values and subsequently the bench and published values. - 4. In measurements for a flowing fluid, the method employed also produced acceptable results for both WSX-6885 and Skydrol 500A fluids. - 5. For conditions of continuous demand and pressurized dormant periods, which exist in flight control systems operations, the fluid bulk modulus does not vary appreciable from published data obtained by the Pressure-Volume-Temperature method. - 6. For aircraft operating periods with the system unpressurized, as in utility systems, the fluid bulk modulus is low initially but approaches the published value within the first moments of system actuation. Therefore, for design purposes, the published value would be the most accurate. 4D 1546 D PAGE 82 6-7000 #### VI. REFERENCES - 1. "Isothermal Secant and Tangent Bulk Modulus of Selected Hydraulic Type Fluids to 750 F and 10,000 psig," Vern Hopkins, Donnel R. Wilson, Calvin Bloze, Midwest Research Institute presented at ASME Lubrication Symposium, June 3-5, 1963. - 2. "High Intensity Ultrusonics," Basil Brown, John E. Goodman, D. Van Nostrand Company, Inc., New Jersey, 1^o65 - "Mechanics of Fluids," Irving H. Shames, McGraw-Hill Book Company, Inc., New York, 1962 - 4 "Fluid Mechanics," Victor L. Streeter, McGraw-Hill Book Company, Inc., New York, 1962 - 5. Boeing Document D6-17726TN, Physical and Chemical Evaluation of Candidate Hydraulic Fluids for Superionic Aircraft (September 8, 1964 through January 31, 1967), March 9, 1967. - 6. Boeing Document Do-51225TN, "Analytical Method of Obtaining Fluid Tangent Bulk Modulus from a Single Secant Bulk Modulus Value by Least Squares Curve Fit," August 10, 1967. - Monsanto Technical Bulletin No. AV-1, "Skydrol 500A and Skydrol 7000 Fire Resistant Aircraft Hydraulic Fluids," revised July, 1964. D 1546 D BOEING NO D6-58362TN APPENDICES REV SYM BUEING NO. D6-58362TN PAGE . 84 6-7000 ## RELATIVE FOR CASE STATE OF BULK MUSICES FROM REPERENCE 4. SQUAKINS $$a^{2} = \frac{K/2}{1 + \frac{KCC_{1}}{EC_{1}}}$$ $$ea^{2} + \frac{KCea^{2}C_{1}}{EC_{1}} = K$$ $$ea^{2} = \frac{K[1 - \frac{Dea^{2}C_{1}}{EC_{1}}]}{EC_{1}}$$ $$\frac{ea^{2}}{1 - \frac{Dea^{2}C_{1}}{EC_{1}}}$$ $$\bar{B}_{S} = \frac{e^{-2}C^{2}}{E^{2}C^{2}-O_{F}C^{2}C_{2}}$$ WHERT. () 1 a - which is well - Fricht e - FLA - LEATY - SCULTIFT? D - MART THAT LINE OF FT to The THERM ST - FT E- no more security of the | | The second secon | e unitamine : a manifer elle som manife me elle mente unitamine unitamine de la proper del la proper de la proper de la proper de la proper de la proper del la proper de p | |-----|--|--| | 128 | | D6-58362TN | | ATR | THE | BOEING COMPANY 86 | ### RELATION (CO. 1'T) C - TUBE RESTAUNT CONSTANT - DEPENDENT D CLOSURE TIME FOR RAPIOLY CLOSING VACUE. t = ZL/a WHERE: L= TIME- SEC L. LENGTH OF TUBE- FT a. WAVE SPEED - FT/SEC | _ | | | | | | |---|--------|---|------------------|--------------------|------------| | - | \$ 190 | • | 1 85. 550 3 DAME | • | ļ | | | GE 175 | | | | D6-58362TN | | | A*3 | | 1 | THE FOEING COMPANY | 87 | #### CALCULATIONS OF ILEN SIL IN TEST SECTION WITH ACTURTOR CHOWN CONDITIONS: MULL - 2.48" ROD ELPOSED FULL EXTEND - 4,45" ROD EXPOSED FULL RETPACT - 0.50" ROD EXPOSED VEL THEE = # (40) (3.5) = 1.714 103 VENTEST = (3450:)(C.102 X10-2 12/CC) = 24.1 12 RETRACT: (FROM N'11_) STIRCTE = 2,48 - DE = 1.98 IN A = 3.38 m2 VEL = (3.35)(1.95) = C.69,03 Ven-TS = 6.69 - 1.714 = 4.976 103 - 5.0.23 EXTENS: (FIZEAN NULL) 570: 17 = 4:40 - 2,49 = 1.92 ,w 1= 3.35 ... 2 Voc = (3.35)(1.92) = 6,49,003 . Van-75 = 6.49 - 1.71 = 4.774 = 4.9 1.3 | | , | * | | , | |-------|-----|--------------|--------------------|---------------| | ENSS, | | 25 45 CA75 | | | | CHICK | i | | | | | ArR | 1 3 | i | | D6-58362TN | | APA | | | THE BOSING COMPANY | 90 | | | | 1 | RESTON, WASHINGTON | 88 <i>ž</i> * | NEW OIL (CONT) RETRACT: (FREM FULL EXTERNA) STREATE: 1.90 - 6.5 = 3.40 m A= 3.35 ,2 VOL = (3.35)(3.90) = 13.2.23 Ven-75 = 13.2 - 1.714 = 11.456 = 11.5 m3 EXTEND: (FRIM FULL RETRACT) VCL - 13,2 12 12 Ven-75 = - 11.5 123 RETRACT : (FULL E-TE, IL TO MULL) STRONE: 4,40 - 2,48 . 1.92 IN Vel = (3.25)(1.42) = 6.29 123 Von -72 = 6.44 - 1.71= = 472 + 4.2 12 LEX CIL PETER TWO FULL. CYULL - A SSUMME NO MINING 45 111 64 # ** z APPENDIX B Miscellaneous PAGE : 90 REV SYM Monsanto St. Louis: Missouri September 16, 1966 Mr. Wilson Hamilton Naterial
Engineering Dept. The Boeing Company Renton, Washington Dear Wilson: Sometime ago Deeing requested that we supply your company with data relating to Skydrol 500A, Skydrol 500B and 5606. Specifically you requested viscosities, densities, pressure viscosities, bulk moduli, and vapor pressures for these products. In addition you requested air solubility and speed of sound data for Skydrol 500A. Attached to this letter our a number of data sheets on which you will find the requested information. If we can be of any further service to you on this subject please let us know. Very truly yours, F. H. Langenfeld /cc Attachments cc: Ifr. Jerry Johnson Materiel Engineering Dept. > Mr. Al Bremer Engineering Staff ## MONSANTO COMPANY ORGANIC DIVISION RESEARCH DEPARTMENT #### Miscellaneous Monsanto Data on Skydrol 500 and MIL-H-5606 | | Skydrol | | MIL-H-5 | | |--|-------------------|------------------------------------|----------------------|---------------| | | <u> </u> | В | <u>A</u> | В | | 1. Viscosity, CS at -40°F | 562 | 761 | 471 | 469 | | 0°F | 100.9 | 105.4 | 103.6 | 97.1 | | 100°F | 11.70 | 11.79 | 14.56 | 14.31 | | 210°F | 3.91 | 3.96 | 5.24 | 5.23 | | 2. Density, gm/ml. | | • | | | | at -40° F | 1.1213 | 1.1203 | 0.9042 | 0.9109 | | 0° F | 1.1023 | 1.1007 | 0.8881 | 0.8984 | | 100° F | 1.0545 | 1.05 32 | 0.8487 | 0.8542 | | 210° F | 1.0025 | 1.0010 | 0.8051 | 0.8104 | | S. Bulk Modulus, Kpsi at 100°F Secant, 0-7 300°F Kpsig) | 264 | 278 | 229 | 229 | | | 220 | 223 | 186 | 179 | | | 165 | 178 | 139 | 139 | | 4. Pressure Viscos- ity, CS at 2 Kpsig (100°F) 4 Kpsig 6 Kpsig | 13.9 | 13.4 | 19.8 | 17.3 | | | 16.5 | 15.0 | 25.9 | 21.0 | | | 19.4 | 16.8 | 34.8 | 25.5 | | 5. Vapor Pressure,
mmHg at 50°F
150°F
250°F | 1.2
15.2
77 | 3.0 o
44
2 3 5 | . 0.8
6.9
30.5 | -
42
77 | D. R. Miller ## MONSANTO COMPAJY ORGANIC DIVISION RESEARCH DEPARTMENT #### Miscellaneous Monsanto Data on Skydrol 500/ 6. Air Solubility in Skydrol 500A at 100°F Vol. $$\%$$ air (68°F, 1 atm. abs.) = 0.54 p(psia) PPM (wgt.) air = 6.4 p(psia) Estimated accuracy of constants + 5% Measurement range 14.7 to 115 psia 7. Sonic Velocity of Skydrol 500A at atmospheric pressure C (meters/sec.) = $$1435 - 3.25 t(^{\circ}C)$$ = $1493 - 1.81 t(^{\circ}F)$ Estimated accuracy of constants + 1% Measurement range 0 - 100°C 8. Sonic Velocity of Skydrol 500A at 100°F, meters/sec. | | Sample Air-Saturat | | |----------------|--------------------|----------| | Pressure, psig | O psig (as is) | 100 psig | | 0 | 1310 | | | 100 | - " | 1312 | | 1000 | · 1335 | 1340 | | 2000 | 1361 | 1367 | | 3000 . | 1387 | · 1597 | | 4000 | 1415 | 1425 | | 5000 | 1440 | 1453 | D. R. Miller 1500 SOME VELOCITY- METERS/SEC. 1400 1300 2009 (ESTIMATED) 1200 1100 1000 1000 3000 4000 5000 PRISSURE -PSIG Some VELOCITY DATA AFT. D6-58362TN SKYDRUL STOA FLUID THE FOUND COMPANY 10 4s, C-R4 #### "TECHNIQUES FOR MEASURING AND REMOVING AIR FROM HYDRAULIC CONTROL SYSTEMS" V. G. Magorien, Chief Engineer Seaton-Wilson Mfg. Co., Inc. Burbank, California Presented before the 22nd annual meeting of the National Conference on Fluid Power, October 20 - 21, 1966 Q6-58362TN 95 #### TABLE OF CONTENTS | | GENERAL | • | |--------------------------------------|---|---| | 11 | SAMPLE AIR TESTS | • | | भूति । | FORMS OF AIR | | | 7:À | ADDITIONAL DATA ON DISSOLVED AIR | | | v. | DESCRIPTION OF AIR MEASURING EQUIPMENT | | | Υt | DESCRIPTION OF AIR SEPARATION EQUIPMENT | ł | | ŽΗ | RESULTS OF AIR REMOVAL | ı | | VIII | CONCLUSIONS | • | | · · | APPENDIX | | | * | LIST OF ILLUSTRATIONS | | | FIG.
FIG.
FIG.
FIG.
FIG. | VARIOUS CYLINDER PRESSURES IV BULK MODULUS @ VARIOUS AIR CONTENTS V AIR CONTENT GENERATED FROM DISSOLVED AIR VI ILLUSTRATION OF THE THREE FORMS OF AIR VII DISSOLVED GAS CONTENT OF VARIOUS HYDRAULIC FLUIDS VIII A-400 "AIRE-OMETER" IX AD-4001 "AIRE-OMETER" | | | | n on foot before and | | SCHEMATIC OF CLOSED RESERVOIR TEST SYSTEM UNSATURATED OIL SYSTEM DISSOLVED AIR CONTENT VS RUNNING TIME CYLINDER AIR CONTENT WHEN FLUSHED WITH FIG. VIII FIG. IX FIG. X FIG. XI FIG. XIII FIG. XIII ## "TECHNIQUES FOR MEASURING AND REMOVING AIR FROM HYDRAULIC CONTROL SYSTEMS" #### GENERAL IT IS A GENERALLY ACCEPTED FACT, THAT HYDRAULICS IS AN EXCELLENT METHOD OF POWER TRANSMISSION. THE PRIME REASON FOR THIS ACCEPTANCE IS IT'S INHERENT STIFFNESS. DUE TO THE VERY HIGH BULK MODULUS OF MOST FLUIDS, THE POSITIVE, PRECISE POSITIONING OF A RAM OR A SHAFT SHOULD BE A CERTAINTY; BUT IS IT? TRUE, ONE CANNOT SAY THE SYSTEM IS "STIFF" UNLESS IT IS COMPLETELY FLUSHED OF AIR; HOWEVER, ONCE THAT IS ACCOMPLISHED, THE SYSTEM SHOULD BE "SOLID." THE WORD SHOULD IS USED BECAUSE THE STIFFNESS OF A SYSTEM IS RARELY MEASURED IN A QUANTITATIVE MANNER. THIS OVERSIGHT MIGHT BE EXPLAINED AWAY BY CALLING IT AN INTERFACE PROBLEM. THAT IS, IT IS THE POINT WHERE THE DESIGNER LEAVES OFF AND THE TECHNICIAN TAKES OVER. TOO OFTEN, IT IS THE RESPONSIBILITY OF THE TECHNICIAN TO KNOW WHEN TO STOP FILLING AND FLUSHING. IT IS SOMEWHAT ANTI-CLIMACTICAL TO GATHER A LARGE NUMBER OF MEASUREMENTS ON INDIVIDUAL COMPONENTS; AND THEN, AT THE LAST MOMENT, NOT MEASURE THAT WHICH WAS DESIRED IN THE FIRST PLACE! THE PURPOSE OF THIS REPORT IS TO DESCRIBE TECHNIQUES AND DEVICES FOR MEASURING AND REMOVING AIR IN ORDER TO INSURE A "STIFF," HIGH RESPONSE SYSTEM. #### 11 SAMPLE AIR TESTS IN CRDER TO OBTAIN DATA WHICH WOULD BE BOTH SIMPLE, YET MEANINGFUL, A CONVENTIONAL, DOUBLE-ENDED ACTUATOR (SEE FIG. 1) WAS CONNECTED TO A 1 GPM, 3000 PSI, MIL-H-5606, HYDRAULIC SYSTEM. IT WAS THEN INSTRUMENTED WITH A DEVICE WHICH WOULD MEASURE THE COMPRESSIBILITY OF ANY AIR-OIL MIXTURE. THE MECHANICS OF THE INSTRUMENT WILL BE EXPLAINED LATER. STARTING WITH AN EMPTY ACTUATOR, FLUSHING BEGAN AT LOW PRESSURE; I. E., APPROXIMATELY 300 PSIG. THE CYLINDER WAS CYCLED BY MEANS OF A FOUR-WAY VALVE WITH FLOW PASSING THROUGH AN .032 DIAMETER ORIFICE AT THE CYLINDER PORT. THE PURPOSE OF THE ORIFICE WILL BE EXPLAINED LATER. AFTER EVERY SIX CYCLES, THE TEST STAND WAS SHUT DOWN AND AN AIR MEASUREMENT TAKEN. A GRAPH WAS MADE, ILLUSTRATING THE DECREASE OF AIR VERSUS FLUSHING CYCLES. (SEE FIG. 11.) IN ADDITION, THE CYLINDER WAS PERIODICALLY PRESSURIZED TO 1000, 2000 AND 3000 PSIG. THE AMOUNT OF FLUID REQUIRED TO ACHIEVE THESE PRESSURES WAS MEASURED AND RECORDED. (SEE FIG.111.) THE EFFECTIVE BULK MODULUS @ 3000 PSIG WAS THEN COMPUTED FOR FOR VARIOUS AIR CONTENTS USING THE VALUES OBTAINED. (SEE FIG. IV.) NEEDLESS TO SAY, IT WAS QUITE STARTLING TO DISCOVER THAT, WITH A CONTENT OF ONLY .17% OF COMPRESSIBLE AIR, THE THEORETICAL BULK MODULUS WAS CUT IN HALF! THE FIRST INCLINATION IS TO TAKE SOLACE FROM THE FACT THAT, AT THE LEAST, CAREFUL FLUSHING HAD BROUGHT THE COMPRESSIBLE AIR CONTENT DOWN TO. 0.2%. UNFOR-TUNATELY, THIS VALUE DID NOT REHAIN AT 0.2%. AFTER FLUSHING, THE TEST STAND PRESSURE WAS INCREASED TO 1000 PSIG. THE PURPOSE OF THE ORIFICE, UPSTREAM OF THE CYLINDER, WAS TO SINU-LATE THE AREA OF AL. .032 DIAMETER VALVE OPENING. AFTER ONE-HALF CYCLE, AN AIR MEASUREMENT WAS MADE AND FOUND TO BE 0.8%! AFTER THE SECOND CYCLE, IT WAS 1.6% AND SO ON. (SEE FIG. V.) IN SHORT, DISSOLVED AIR CAME OUT OF SOLUTION AND COLLECTED IN - THE ACTUATOR. IT IS THIS FORM OF AIR WHICH NEGATES NORMAL FILL AND FLUSH TECHNIQUES. BEFORE CONTINUING WITH DESCRIPTIONS OF AIR MEASURING AND AIR SEPARATING DEVICES, SOME DEFINITIONS ARE IN ORDER. #### III FORMS OF AIR FREE AIR: FREE AIR IS THAT WHICH IS TRAPPED, BUT NOT TOTALLY IN GONTACT WITH A FLUID. IT IS NEITHER ENTRAINED NOR D'ISSOLVED. AN EXAMPLE OF FREE AIR WOULD BE AN "AIR-POCKET" IN A SYSTEM. ENTRAINED AIR: ENTRAINED AIR IS THAT WHICH IS SUSPENDED IN A FLUID AND NORMALLY EXISTS IN THE FORM OF SMALL BUBBLES. DISSOLVED AIR: DISSOLVED AIR IS THAT WHICH ENTERS INTO SOLUTION WITH A FLUID. SINCE IT IS NEITHER FREE NOR ENTRAINED AIR, IT DOES NOT BEHAVE ACCORDING TO BOYLE'S LAW. IT DOES, HOWEVER, CBEY HENRY'S LAW, WHICH STATES THAT "THE WEIGHT OF GAS DISSOLVED IS PROPORTIONAL TO THE PRESSURE." IT CAN BE REMOVED BY TWO DIFFERENT MEANS: SUBJECTING THE FLUID TO A REDUCED PRESSURE AND/OR RAISING THE FLUID TEMPERATURE. ITS PRESENCE OR ABSENCE DOES NOT AFFECT THE VOLUME OF THE FLUID. A PICTORIAL EXAMPLE OF THE THREE FORMS OF AIR IS SHOWN IN FIG. VI. #### IV ADDITIONAL DATA ON DISSOLVED AIR SEATON-WILSON HAS MADE DISSOLVED AIR MEASUREMENTS ON SEVERAL, COMMON, HYDRAULIC FLUIDS AND THE RESULTS ARE SHOWN IN FIG. VII. IT SHOULD BE EMPHASIZED THAT MEITHER THE PRESENCE NOR THE ABSENCE OF DISSOLVED AIR AFFECTS THE VOLUME OF THE OIL; AND D6-58362TN 98 TEST DATA SEEMS TO INDICATE THAT THERE IS NO EFFECT ON BULK MODULUS, PROVIDING THE AIR IS IN SOLUTION. THESE FACTS, AT FIRST, APPEAR PARADOXICAL; HOWEVER, IF ONE VISUALIZES A CONTAINER FILLED TO THE BRIM WITH MARBLES, WHICH REPRESENT THE DIL MOLECULES, IT IS POSSIBLE TO POUR IN FLUID, REPRESENTING AIR, ARGUND THEM, OR REMOVE THE FLUID WITH NO CHANGE IN VOLUME. THE WEIGHT OF THE CONTAINER CHANGES, BUT NOT THE VOLUME. THE APPEARANCE AND DISAPPEARANCE OF DISSOLVED GASES, IN THE FORM OF ENTRAINED AIR, IS AN INTERESTING, BUT ELUSIVE, PHENOMENON. ACCELERATING FLUID THROUGH AN ORIFICE CAUSES A LOCAL, STATIC PRESSURE DROP. IF THE PRESSURE DROPS BELOW ATMOSPHERIC PRESSURE, DISSOLVED GAS APPEARS IN THE FORM OF TINY BUBBLES. PROVIDING THESE BUBBLES DO NOT CONGLOMERATE INTO LARGER BUBBLES, AND THE VELOCITY OF THE FLUID IS KEPT LOW, MOST OF THE AIR BUBBLES ARE READSORBED DOWNSTREAM WHERE THE STATIC PRESSURE IS GREATER THAN ATMOSPHERIC. THIS PHENOMENON AGREES WITH HEARY'S LAW. THERE IS AN EXCEPTION TO THIS CONDITION, HOWEVER; AND THAT IS, AS THE FLUID IS ACCELERATED CLOSE TO ITS SONIC
VELOCITY, THE AIR BUBBLES EXPAND TO LARGER SIZES AND ARE RELUCTANT TO GO BACK INTO SOLUTION DESPITE SUBSEQUENT EXPOSURE TO HIGHER PRESSURES. TOO, EROSION OF MATERIALS HAS BEEN KNOWN TO TAKE PLACE IN THE VICINITY OF BUBBLE GROWTH. IT IS NOT THE PURPOSE OF THIS REPORT, HOWEVER, TO INVESTIGATE ERCSION. #### V DESCRIPTION OF AIR MEASURING EQUIPMENT Since Air can exist in either compressible or incompressible forms, it is necessary to have two, distinctly different means of measuring its presence. To fill these needs, Seaton-Wilson Manufacturing Company has developed two instruments: #### A. A-400 "AIRE-OMETER" (SEE FIG. VIII.) THIS DEVICE IS USED TO MEASURE COMPRESSIBLE AIR CONTENT. IN PRINCIPLE, IT TAKES ADVANTAGE OF AIR'S COMPRESSIBILITY. THE AIR IN A CLOSED SYSTEM IS PRESSURIZED TO A PREDETERMINED LEVEL, EITHER WITH ITS OWN FLUID OR FROM AN EXTERNAL SUPPLY. AFTER "ZEROING-OUT" THE INSTRUMENT, THE PRESSURE IS RELIEVED AND THE COMPRESSED FLUID IS ALLOWED TO EXPAND INTO A MANOMETER TUBE, WHERE IT IS MEASURED. BY MEANS OF BOYLE'S LAW, THE AMOUNT OF TRAPPED AIR LAN BE CALCULATED. #### B. AD-4001 "AIRE-OMETER" (SEE FIG. IX.) THIS DEVICE IS USED TO MEASURE DISSOLVED AIR CONTENT. IN PRINCIPLE, IT TAKES ADVANTAGE OF THE FACT THAT GAS WILL COME OUT OF SOLUTION WHEN EXPOSED TO A VACUUM. A SMALL FLUID SAMPLE IS TITRATED FROM THE UPPER RESERVOIR INTO THE LOWER TUBE, USING MERCURY AS THE WORKING MEDIUM, AND THEN EXPOSED TO A VACUUM. AFTER THE GASES HAVE ESCAPED, THE AIR-FLUID MIXTURE IS PRESSURIZED TO ATMOSPHERIC PRESSURE AND THE VOLUME OF GAS MEASURED. #### VI DESCRIPTION OF AIR SEPARATION EQUIPMENT To remove all three forms of Air, Seaton-Wilson has developed an automatic air Separator. (SAF-1001 "SEPARATE-AIRE") (See FIG. X.) SINCE DEGASSING CAN ONLY BE ACCOMPLISHED IN THE PRESENCE OF A VACUUM; YET, A NEGATIVE HEAD IN A RESERVOIR RESULTS IN PUMP CAVITATION, THE FLUID MUST BE PROCESSED IN A SEPARATE CONTAINER. AFTER THE FLUID HAS BEEN DEGASSED, IT MUST THEN BE PUMPED BACK UP TO SYSTEM RETURN PRESSURE. TO ACHIEVE THIS, THE "SEPARATE—AIRE" USES AN ASPIRATOR TO BOTH DEGAS AND JET—PUMP THE PROCESSED FLUID UP TO SYSTEM RETURN PRESSURE. THE "SEPARATE—AIRE" IS PLACED IN A SYSTEM IN PARALLEL TO THE LOAD, AND THUS OPERATES AT SYSTEM PRESSURE. (SEE FIG. XI.) UNLESS "VALVED—OFF" FROM THE SYSTEM, IT WILL MAKE A CONTINUAL BLEED OR DRAIN ON THE HYDRAULIC HORSEPOWER PROVIDED BY THE PUMP. FLUID, TO BE DEGASSED, IS INTRODUCED FROM THE RETURN SIDE OF THE HYDRAULIC CIRCUIT. SINCE UNSATURATED FLUID IS ASPIRATED INTO THE SAME STREAM, WHICH IS CREATING THE VACUUM, MIXING OCCURS. THE DEGASSING PROCESS CAN NOW BE SEEN TO BE A PARASITIC ONE, AND A CURVE OF DISSOLVED AIR CONTENT VERSUS RUNNING TIME OF A "SEPARATE-AIRE" IS AN EXPONENTIAL ONE. (SEE FIG. XII FOR DISSOLVED GAS CONTENT OF OPEN AND CLOSED SYSTEMS.) AFTER THE DEGASSING CHAMBER HAS FILLED WITH AIR, FLOAT SWITCHES ARE USED TO SENSE THE END OF THE CYCLE. THE ASPIRATOR SCIENCID VALVE IS SHUT OFF, AND THE VENT SOLENOID VALVE OPENED. DEGASSING FLOW IS ALLOWED TO CONTINUE, AND SINCE IT IS NO LONGER BEING ASPIRATED, FILLING OCCURS. THE AIR IS COMPRESSED TO A PRESSURE SLIGHTLY ABOVE ATMOSPHERIC PRESSURE AND VENTING BEGINS AGAIN THROUGH A CHECK VALVE: FLOAT SWITCHES SENSE WHEN TOTAL PURGING HAS BEEN ACCOMPLISHED AND THE ASPIRATOR IS REACTIVATED TO REPEAT THE ENTIRE CYCLE. #### VII RESULTS OF AIR REMOVAL THE HYDRAULIC CYLINDER, DESCRIBED ABOVE, WAS TESTED WHILE ASSEMBLED IN A SYSTEM WHOSE SCHEMATIC IS SHOWN IN FIG. XI. ALL OF THE COMPRESSIBLE AIR MFASHREMENTS, SHOWN IN FIGS. II, III AND IV WERE MADE WITH AN A-400 "AIRE-OMETER." TO EVALUATE THE EFFECTS OF AIR REMOVAL, THE AIR-OIL SEPARATOR, DESCRIBED ABOVE, WAS ALLOWED TO OPERATE FOR EIGHT, 15 MINUTE CYCLES. THE RESERVOIR FLUID WAS COVERED BY A FLOATING PISTON D6-58362TN AND THE DISSOLVED AIR CONTENT OF THE FORMER WAS MEASURED BY HEARS OF AN AD-4001 "AIRE-OMETER." A CURVE OF DISSOLVED AIR CONTENT VERSUS RUNNING TIME IS SHOWN IN FIG. XII. THE ACTUATOR WAS THEN RECYCLED AT LOW PRESSURES, AS BEFORE, AND AIR MEASUREMENTS WERE TAKEN EVERY SIX CYCLES. (SEE FIG. XIII.) IT IS WORTH NOTING THAT THE NUMBER OF FLUSHING CYCLES REQUIRED TO ACHIEVE A SPECIFIC LEVEL OF AIR CONTENT DIMINISHED. THE SYSTEM PRESSURE WAS THEN RAISED, AS BEFORE, TO 1000 PSIG. TEN CYCLES WERE MADE AND NO ENTRAINED AIR APPEARED IN THE CYLINDER, NOR IN ANY PART OF THE SYSTEM. (SEE FIG. XIII.) #### VIII CONCLUSIONS THE CONCLUSIONS THAT WERE DRAWN FROM THE TESTS WERE BROKEN DOWN INTO FOUR SPECIFIC AREAS: #### A. EFFECTS OF FLUSHING THE EFFECT OF CONTINUOUS, HARD-OVER CYCLING UPON AIR CONTENT AGREED WELL WITH INTUITIVE RESULTS. IN FACT, THE FINAL VALUES ACHIEVED WERE FAR LOWER THAN WHAT WOULD BE IMAGINED FOR A CYLINDER WITH "BUILT-IN" AIR POCKETS. ASSIDUOUS CYCLING CAN, THEREFORE, BE EXPECTED TO EFFECTIVELY PURGE ANY GIVEN SYSTEM OF AIR. #### B. AERATION DUE TO DISSOLVED AIR The results of the high pressure cycling indicate that systems using air-saturated MIL-H-5606 fluid, or similar hydraulic fluids, at pressures of approximately 1000 psig or greater, can look forward to the generation of entrained air across orifices in the system. LOW PRESSURE HARD-OVER CYCLING OF ACTUATORS CAN HELP REMOVE THE RESULTANT AIR IF THE CYLINDER TO VALVE LINES ARE SHORT. CYLINDERS WORKING UNLOADED AND ONLY IN THE MID-STROKE. RANGE, WITH INFREQUENT HARD-OVER TO HARD-OVER SIGNALS, CAN EXPECT INCREASING AIR CONTENTS WITH TIME. #### C. BULK MODULUS THE EFFECT OF AIR ON BULK MODULUS AGREED WELL WITH THEORY WHERE THE AIR CONTENT WAS 4% OR MORE (SEE APPENDIX).AT HIGH PRESSURE, THE CORRELATION FELL OFF AS AIR CONTENT DECREASED; I. E., ADDITIONAL VOLUME WAS REQUIRED BEYOND THAT DUE TO AIR AND FLUID COMPRESSIBILITY. THIS EFFECT COULD ONLY BE EXPLAINED BY THE ELASTICITY OF THE CYLINDER, O-RING, END CAP, AND THREAD CLEARANCES. #### D. EFFECTS OF DEAERATION THE EFFECT OF DEAERATING THE SYSTEM FLUID WAS TO PREVENT COMPLETELY THE GENERATION OF ENTRAINED AIR ACROSS THE SIMULATED VALVE ORIFICE. PREVIOUS TESTS, CONDUCTED WITH UNSATURATED FLUID, INDICATED ACCELERATED PURGING ALSO TAKES PLACE JUE TO THE ADSORPTION OF SMALL AIR BUBBLES. FURTHER WORK IS NOW UNDERWAY TO QUALITATIVELY DEFINE THE REDUCTION OF PUMP NOISE AND MATERIAL EROSION DUE TO THE USE OF UNSATURATED, HYDRAULIC FLUID. #### E. GENERAL CONCLUSIONS IT IS READILY APPARENT, FROM THE TESTS MADE, THAT SEVERAL AREAS OF PERFORMANCE CAN BE IMPROVED AS A DIRECT RESULT OF DEAERATING THE SYSTEM FLUID. IN REGARD TO BULK MODULI, A WORD OF CAUTION IS NECESSARY. THE VALUES SHOWN ARE NOT S SMITTED AS PRACMATIC NUMBERS TO BE USED WITH ABANDON. IF ANYTHING, THEY POINT OUT THAT, FOR ANY SPECIFIC SYSTEM, ACTUAL MEASUREMENTS SHOULD BE MADE RATHER THAN RELYING UPON "TEXT BOOK" VALUES. #### ALPENDIX THE FOLLOWING CHART CONTAINS ACTUAL AND COMPUTED THEORETICAL VALUES OBTAINED FOR BULK MODUL! TESTS: (NOTE: 0.17, 0.97 AND 4.15 REFER TO AIR CONTENT IN %) | PRESS: | ACTUAL | Vol. | Req'b | THEOR. | Yol. F | REQ D | DEVI | ATION - | N | |--------------|--------|------------|-------------|--------|--------|-------|------|---------|------| | | 0.17 | c.97 | 4.15 | 0.17 | 0.97 | 4.15 | 0.17 | 0.97 | 4.15 | | • 45
500 | .040 | .25 | .99
1.34 | .042 | .206 | .20 | ۲ | 7 | 10. | | 1000
1500 | .240 | .52 | 1.43 | .186 | .428 | 1.44 | 29 | 24 | 0.7 | | 2000
2500 | •460 | .71
.81 | 1.59 | .303 | •553 | 1.57 | 52 | 29 | 1.2 | | 3000 | .670 | .88 | 1.73 | .415 | .561 | 1.58 | 61 | 33 | 2.9 | *NOTE: AIR CONTENT DETERMINED @ 45 PSIG BY MEANS OF BOYLE'S EQUATION: $V_1 = P_2 (V_1 - V_2)/(P_2 - P_1)$ $$V_1 = 4\Delta V/3$$ E.G. $\Delta V = 4 \times .04/3 = .0533 \text{ in}^{\frac{3}{2}}$ $\% \text{ AIR} = .053 \times 100/32 = 0.166\%; use 0.17\%$ (ACTUAL CYLINDER VOLUME: 32 CUBIC INCHES) INCREASING DEVIATIONS WITH DIMINISHING AIR CONTENTS ATTRIBUTED TO FIXED DISPLACEMENT OF CYLINDER, O-RINGS AND END CAP THREADS AT THE VARIOUS PRESSURES. THEORETICAL VOLUME REQUIRED WAS COMPUTED AS FOLLOWS: TOTAL VOLUME REQUIRED = CHANGE IM OIL VOLUME + CHANGE IN AIR VOLUME. V TOTAL = (CIL VOLUME X PRESSURE/ SULK MODULUS) + AIR VOLUME X (1 - VOLUME RATIO) | PRESSURE | BULK MODULUS | FRESSURE | VOLUME RATIO | |----------|--------------|----------|--------------| | 45 | 220,000 | 45 | •33 | | 1000 | 240,000 | 1000 | .015 | | 2000 | 250,000 | 2000 | •007 | | 3000 | 265,000 | 3000 | .005 | E.G. FOR 0.17% AIR: (AIR CONTENT: 054 IN3; OIL CONTENT: 31.95 IN3 $$\Delta V$$ Total = (31.95 x 3000/265,000) + .054 (1 - .005) = .362 IN^3 + .053 IN^3 = 0.415 CUBIC INCHES (THEORETICAL VOLUME REQUIRED) -7- D6-58362TN 103 #### TEST CYLINDER FIG. I #### FLUSHING CYCLES VS. AIR CONTENT FIG. II D6-58362TN 104 AIR CONTENT GENERATED FROM DISSOLVED AIR F16. XII A-400 "AIRE-OMETER" FIG. VIII D6-58362 TN 108 AD-4001 "AIRE-OMETER" FIG. IX D6-58362 TN 109 FIG X SYSTEM DISSOLVED AIR CONTENT VS. RUNNING TIME FIG XII WITH UNSATURATED OIL FIG XIII D6-58362TN ## LIST OF ILLUSTRATIONS | 1 Definition of Secant Bulk Modulus 5 | i | |---|-----| | | | | Typical System Bulk Modulus Data - MIL-H-5606B | • | | 3 Typical System Bulk Modulus Data – WSX-6885 8 | } | | 4 Definition of Secant Bulk Modulus | 3 | | 5 Bench System - Bulk Modulus Investigation 15 | 5 | | 6 Bench System - Bulk Modulus Investigation 10 | 6 . | | 7 Bench System - Bulk Modulus Investigation 12 | 7 | | 8 Test S ystem - Bulk Modulus Investigation 18 | 8 | | 9 Test System - Bulk Modulus Investigation 19 | 9 | | 10 Test System - Bulk Modulus Investigation 20 | 0 | | 11 Test System - Wave Speed Measurement Section 23 | 2 | | 12 Test System - Wave Speed Measurement Section 23 | 3 | | Comparison of Bench, System and Published Data - MIL-H-5606B 26 | 6 | | 14 Deviation Between Bench and System Bulk Modulus 2 | 7 | | 15 Deviation Between Bench and Published Bulk Modulus 2 | 8 | | 16 Bulk Modulus Data, System, MIL-H-5606B 2 | 9 | | Bulk Modulus Data, System, MIL-H-5606B | 0 | | Bulk Modulus Data, System, MIL-H-5606B. | 1 | | 1°
Bulk Modulus Data, 7-Hour Extended Cycling 3 | 2 | | 20 Bulk Modulus Data, 14-Hour Extended Cycling 3 | 13 | | 21 Bulk Modulus Data, System, MIL-H-5606B 3 | 34 | | 22 Bulk Modulus Data, System, MIL-H-5606B 3 | 35 | BOEING No. D6-58362TN 113 PAGE 6-7000 ## LIST OF ILLUSTRATIONS | Figure | | Page | |--------|--|------| | 23 | Variation of Bulk Modulus With Time | 37 | | 24 | Variation of Bulk Modulus With Time | 38 | | 25 | Variation of Bulk Modulus With Time | 39 | | 26 | Variation of Bulk Modulus With Time | 40 | | 27 | Variation of Bulk Modulus With Time | 41 | | 28 | Variation of Bulk Modulus With Time | 42 | | 29 | Comparison of Bench and Published Data - 100 F | 43 | | 30 | Comparison of Bench and Published Data – 350F | 44 | | 31 | Deviation Between Bench and Published Bulk Modulus | 45 | | 32 | Bulk Modulus Data, System, WSX-6885 | 46 | | 33 | Bulk Modulus Data, System, WSX-6885 | 47 | | 34 | Bulk Modulus Data, System, WSX-6885 | 49 | | 35 | Bulk Modulus Data, System, WSX-6885 | 50 | | 36 | Bulk Modulus vs. Time, System, WSX-6885 | 51 | | 37 | Bulk Modulus vs. Time, System WSX-6885 | 52 | | 38 | Bulk Modulus vs. Time, System NSX-6885 | 53 | | 30 | Bulk Modulus vs. Time, System WSX-6885 | 54 | | 40 | System Data with Four Hour Cycling WSX-6885 | 55 | | 41 | System Data with Four Hour Cycling WSX-6885 | 56 | | 42 | Bench Data, Skydrol 500A | 57 | | 43 | Comparison of Bench and Published Data, Skydrol 500A Fluid | 58 | | 44 | Bulk Modulus Data, System, Skydrol 500A | 60 | | 45 | Bulk Modulus Data, System, Skydrol 500A | 61 | D 1546 D PAGE 114 6-7000 ## LIST OF ILLUSTRATIONS | Figure | | <u>Page</u> | |--------|---|-------------| | 46 | Bulk Modulus Data, System, Skydrol 500A | 62 | | 47 | Bulk Modulus Data, System, Skydrol 500A | 63 | | 43 | Bulk Modulus vs Time, System, Skydrol 500A | 64 | | 49 | Bulk Modulus vs Time , System , Skydrol 500A | 65 | | 50 | Bulk Modulus vs Time , System , Skydrol 500A | 66 | | 51 | Bulk Modulus vs Time, System, Skydrol 500A | 67 | | 52 | System Data with Four Hour Cycling, Skydrol 500A | 68 | | 53 | System Data with Four Hour Cycling, Skydrol 500A | 69 | | 54 | Test Section Oil Change with Actuator Cycling | 71 | | 55 | Wave Speed vs Flow, WSX-6885 Fluid | 72 | | 56 | Wave Speed vs Flow, Skydrol 500A Fluid | 73 . | | 57 | Bulk Modulus Data - Flowing Fluid - WSX-6885 Fluid | 74 | | 58 | Bulk Modulus Data - Flowing Fluid, Skydrol 500A Fluid | 75 | | 59 | Published Data - 100 F, WSX-6885 Fluid | 76 | | 60 | Published Data – 200 F, WSX–6885 Fluid | 77 | | 61 | Published Data – 100 F, Skydrol 500A Fluid | 78 | | 62 | Published Data - 200 F, Skydrol 500A Fluid | 79 | | 63 | Air Content Data, WSX-6885 Fluid | 81 | | | | | D 1546 D **BDEING** No. D6-58362TN PAGE 115 **REV SYM** REV SYM T. BOEING NO. PAGE D6-58362TN LIST Q F ACTIVE PAGES PAGES ADDED ADDED PAGES REV SYM PAGE NUMBER REV SYM SECTION PAGE NUMBER REV SYM SECTION REV SYM NUMBER REV SYM PAGE NUMBER REV SYM PAGE NUMBER PAGE NUMBER REV SYM **REV SYM** PAGE NUMBER PAGE NUMBER PAGE 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 AD 15468 REV SYM BOEING NO. D6-58362TN | REVISIONS | | | | | | |------------|-------------|------|----------|--|--| | REY
SYM | DESCRIPTION | DATE | APPROVAL | | | | | | | | | | | | | | | | | | ĺ | | | | | | | ļ | | | | | | | ٠,, | | | | | | | <u> </u> | | | | | | | , , | | | | | | | · | | | | | | | | | | | | | | · | | | | | | | | | | | | | | | | | • | | | | . <i>.</i> | | | | | | | | | | | | | | | • | i
l | | | | | | | ļ | · | j | REV SYM BOEING NO. D6-58362TN 6-7000